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The necessity of investigating the laws of variation of the hydrodynamic parameters of 
a medium during the action of laser radiation on a resonance-absorbing medium results from 
the fact that these processes determine the physics of the situation in a wide class of 
problems of laser sounding of the atmosphere, as well as laser chemistry and technology. 
Studies of these laws were primarily carried out within the model of an inviscid, nonthermal- 
ly conducting gas without including diffusion effects [1-6]. In the same studies, where 
various macrotransport processes (convection, diffusion, heat conduction) were taken into 
account in analyzing the hydrodynamic motion of the medium, it was assumed that internal 
molecular degrees of freedom are not excited during the action of radiation [7-]1]. At the 
same time, as shown by the studies [12-15], the excitation, for example, of molecular oscil- 
!ations in the gas can substantially affect processes of macrotransport z. 

The purpose of the present study is analysis of the effect of microtransport processes 
on the variation in medium parameters of the medium during resonance absorption by radiation 
in vibration-rotation molecular transitions. 

We investigate a two-component "equilibrium stationary gas mixture, consisting of di- 
atomic molecules A(1) and B(2) with a uniform parameter distribution. Let the active radi- 
ation be absorbed at the line center of the vibration-roliation transition m(V', jr) § n(V", 
j") of molecules of kind A (V is the vibrational, and j - the rotational quant~n number) at 
the vibrational ground state (V' = 0) into the excited state (V" = i). In this case 

~ = ~i + ( E  j,, - -  E~, ) /h ,  

where  v 1 i s  t h e  n o r m a l  o s c i l l a t i o n  f r e q u e n c y  o f  m o l e c u l e s  o f  s o r t  A, w h i l e  v I i s  t h a t  o f  

t h e  a c t i n g  r a d i a t i o n ,  Ej, ,  and E j ,  a r e  t h e  r o t a t i o n a l  e n e r g i e s  o f  m o l e c u l e s  o f  s o r t  A i n  

s t a t e s  n and m, and h i s  P l a n c k ' s  c o n s t a n t .  L e t  a l s o  a l l  m o l e c u l e s  be found  in  t h e  e l e c -  
t r o n i c  g r o u n d  s t a t e ,  l e t  i o n i z a t i o n  n o t  o c c u r ,  and l e t  t h e r e  be no c h e m i c a l  r e a c t i o n s .  Con- 
s i d e r  t h e  c a s e  i n  wh ich  t h e  t i m e  o f  i n d u c e d  t r a n s i t i o n s  i s  T I >> TRT, x W  (~RT and T w a r e  
t h e  c h a r a c t e r i s t i c  t i m e s  o f  r o t a t i o n - t r a n s l a t i o n  and i n t r a m o d e  v i b r a t i o n - v i b r a t i o n  e n e r g y  
e x c h a n g e ) .  I n  a n a l y z i n g  t h e  p r o c e s s e s  i n v e s t i g a t e d  i n  t h i s  s t u d y  i t  can be assumed  t h a t  
t h e r e  e x i s t s  t h e r m o d y n a m i c  e q u i l i b r i u m  be t w e e n  t h e  r o t a t i o n a l  and t r a n s l a t i o n a l  d e g r e e s  o f  
f r e e d o m ,  w h i l e  a l o c a l  Bo l t zmann  d i s t r i b u t i o n  i s  e s t a b l i s h e d  i n s i d e  e a c h  mode v i ( i  = 1, 2) 
w i t h  v i b r a t i o n a l  t e m p e r a t u r e  T i ( m o l e c u l a r  v i b r a t i o n s  a r e  m o d e l e d  i n  t h i s  c a s e  by h a r m o n i c  
oscillators). 

To describe the motion of the medium we use the system of Navier-Stokes equations for 
the vibrationally nonequilibrium gas, which are obtained within the first-order approyima- 
tion of perturbation theory in the two-parameter distribution function from the Boltzmann 
kinetic equatzion [16, 17]: 

a_5,o at + v (pu) --  0; ( 1 )  

0N~ 
at + V [Ni (U q- VO] = O; (2 )  

p-~- +p(Uv)U+~p =]~x~x~+~l~u+ ~+ v(vu); (3) 
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Here p ,  p, T are the gas density, pressure, and temperature, U is the velocity of motion of 

the medium, ~=~,uiTi, ~i, ~i are the molecular masses of the i-th component and its molar 
i 

fraction in the mixture, N i = N~i , N is the total number of particles per unit volume, m i is 
the molecular mass of the i-th component of the mixture, R is the universal gas constant, k 
is the Boltzmann constant, gi is the degeneracy mu]_tiplicity of mode vi, CRI = i for linear 

and CR i = 1.5 for nonlinear molecules, Xi V is the vibrational conductivity coefficient for 
the i-th component, X is the heat conduction coefficient, Di T and Dij are the thermal and 

multicomponent diffusion coefficients for the i-th component, DijV is the diffusion coeffi-- 

cient of vibrational energy between the i-th and j-th oscillators, Di V is the vibrational 

thermal diffusion coefficient, q and ~ are the viscosity coefficients, (U'o') is the vector 
with components UjO'jk, O'jk is the viscous stress tensor, X~ are external forces acting on 

a single particle of sort i (in the problem considered X~ = {mig, fNLi}, g is the gravi'ty 
force acceleration, and fi ~L is the nonlinear force acting on a particle of sort i in an 

electromagnetic field), Wi,0J is the rate constant of vibration-translation VT-exchange for 
collisions of molecules of sort i with partner j (j = i, 2), W~,2 is the rate constant of 
intermodel vibration-vibration VV'-exchange, I is the intensity of the acting radiation, k v 
is the radiation absorption coefficient at the vibration-rotation m + n transition, and r i 
is the number of vibrational quanta lost by the i-th partner during VV'-exchange. In writing 
the expressions for qRT and qv i it has been taken into account that for a harmonic oscillator 
the vibration-translation conductivity coefficients are %i VT = 0 [18], and one also has 

v �9 [ hvi ~ N i k e x p ( h ~ , i l k T i )  

~ = D ~ ; C r { ,  c~, = \ - ~ 7  ) [ ~  (a~#~r O -  q'  " 

Since NI, NI, and p are related by 

P = mlN1 + m2Nl, (6)  



then Eq. (I) and the two equations of the form (2) are linearly dependent. It is hence 
easily obtained that, along with the ordinary relations between the multicomponent and ther- 
mal diffusion coefficients Dij = Dji and DI T = -D2 T [19], the following equality must also 
be satisfied 

DVV In T 1 = - -  D~V In T 2. ( 7 ) 

We investigate an axially symmetric beam with a Gaussian intensity distribution in the 
radius I(r, t) = I0(t)exp(-r2/Ra 2) with R a << kv -I (R a is the characteristic radius of the 
beam), while I0(t) = I0 for 0 < t _< Tp and I0(t) = 0 for t > Zp (Zp is the pulse duration of 

the acting radiation). In this case the parameter variations in the longitudinal direction 
can be neglected in comparison with their variations in the transverse cross section of the 
beam, and can be treated as an optically thin gas film in which the action of macrotransport 
processes occurs only along the beam radius. Introducing the dimensionless coordinates r' = 
r/R a, t' = t/~p and transforming to the new variables N i = Ni/Ni0 , U= U~p/Ra, p = P/P0, 

p = p/N0kT0, @ = T/T0, ~i = Vizp/Ra, Ti = Ti/T0, ~v = kv/l% ~ T = I/I0 (the index zero cor.- 

responds to the moment of time t = 0), the system (].)-(5) is reduced to dimensionless form, 
separating in this case the characteristic times of different transport processes (primes 
and tildes are henceforth omitted whenever possible) 
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(12)  

Here ~a = Ra/~P~-~0/O0 is the ~ropagation time of sound oscillations across the beam, T D = Ra2/ 
Dij , TTi = Ra2miNi0/Di T, TDi v = Ra=miNi0/Di V, ~ij V = Ra2/Dij V are, respectively, the times 



of multicomponent diffusion, thermal diffusion of the i-th component, vibrational energy 
diffusion of the i-th oscillator, and vibrational diffusion between the i-th and j-th oscil- 

lators, zX = PRa~CRT~ is the heat conduction time, ~i V= Ra2Cv0i/hi V is the vibrational heat 

conduction time of the i-th oscillator, ~r = W{,0N~,0 is the VT-relaxation time for the 

i-th oscillator, ~VV' = (Wii~0Yi0N0) -~ is the VV'-exchange time, ~1=N~0hv~/~$f0;~k= N~90 is 

f P0Ra 
t h e  c o n v e c t i o n  t i m e  d u e  t o  v i s c o s i t y ,  a n d  ~ = V X o N  ~ i s  t h e  t i m e  o f  v a r i a t i o n  o f  t h e  

s t a t e  o f  t h e  medium u n d e r  t h e  a c t i o n  o f  e x t e r i o r  f o r c e s  X 0. A c c o r d i n g  t o  ( 6 ) ,  i n  t h i s  c a s e  
we h a v e  

N1Pm -~ N~PIV ml ?~o 
9 =  P ra + P lV , P r o =  - -  P :v = - -  m~ ' "~1o " (1]) 

Consider the case in which the absorption coefficient can be represented in the form 
[20] 

i-- exp(-- ~) 81 
kv = kS i - exp (- ~) h0 ' 

[ ]' h o = [ e x p ( 0 1 ) - - t l - l g l ,  e ~ =  exp, .  r~ ] 
(14) 

It is seen from (8)-(14) that the character of variation of hydrodynamic parameters is 
primarily determined by the hierarchy of times Tp, ~a, ~D, TTi, TDi V, ~ij V, TX, ~i V, ~i VT, 

rVV'' ~I, ~k, ~F and, secondarily, by the set of dimensionless Parameters e i, ~, Pm, PN, <" 

We restrict this study to the case in which T2 VT, ~VV" Tk' ~F >> max{~a, TD, ~i V, ~Ti, 

TI VT, TI, Tp}. Besides, it is taken into account that the coefficient DijV is related to 

Dij, while Di V is related to Di T According to [12, 13, 16] one can put Dij V = kvDij and 

DiV = kvDi T, where, depending on the molecular type, k V can vary from 0.4 to i. We further 
put k V = i, which is characteristic of polar molecules (CO, HCI) [13]. We note that k V = 0 
corresponds formally to the case in which the processes of vibrational energy diffusion, 
vibrational thermal diffusion, and vibrational heat conduction can be neglected (in this 
case TDi V, TijV, Ti V m ~). The times ~D, TDi V, TTi, ~ij V, ~i V, ~ are mutually dependent 

since the following relations hold 

kTi 

and, besides, it follows from (7) that 

TD2 = __ TDVj. PN V In T e 
Pm VlnT1 " 

Here kTi are thermal diffusion ratios (kTi = -kTi, their values depend on Pm and PN, and on 
the parameters of the intermolecular interaction potential [21]). Thus, only the following 
characteristic times are independent in the problem under consideration: Ta, ~D, ~i VT, ~VV'' 

TI, ~p. In this case we have a set of independent dimensionless parameters, determining the 
character of variation of the hydrodynamic motion of the medium during nonuniform excitation 
of molecular oscillations of a single mixture component by resonance radiation: Pa = Tp/Ta, 

PD = ~p/~D, PV = ~p/Ti VT, Pm, PN, ~, 81, K, PI = ~p/TI. 

4 



Let the value of energy absorption during the time of radiation action be substantially 
smaller than the energies of rotational and translational molecular degrees of freedom, i.e., 

<< i. One can then linearize Eqs. (8)-(12), representing 0, N, T, U, V~, d~ in the form 

Z = I + ~Z ' ,Z  = 9, N , T ,  Ni,  U = 6U' ,Vi  = 6Vi, di = 8di. (].5) 

It is noted that Eq. (12) is not linearized. Substituting (15) into (8)-(12), and neglecting 
terms of higher order than 6, following elimination of U' from (8), (9) one obtains a system 
of equations for the dimensionless perturbations Ni' , @~, T' and the dimensionless vibra- 
tional temperature T i = Ti/T0, describing the variation of the state of the medium for t 
~p: 
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m2?10  

' i r V Cvi = Cv/A iokCi,o. 

(16) 

(17) 

(18) 

(19) 

The following initial and boundary conditions hold for the problem considered: 

~r r T2 t O: 9 ' = - ~ 1 = N 2 =  = 0 ,  T 1 = t ,  

@'~, = (Pro + p~)-1 t -~- pm + _~_~,~), 
r = 0: 00' aN~ 0N~ at' 0rl 

o--7 =Jar = o--7 = o--7 = ~ =0' 
t t ~ny 

r = c o :  9 ' = N I = N ~ =  = 0 ,  T l = t .  

It is noted that the initial condition for 8p'/Ot follows from (13). The two equations 
of the form (15), as well as (17)-(19), completely determine the variation of all hydrody- 
namic parameters for known Pa, PD, PV, PI, Pm, PN, ~, ez, K values. The numerical integra- 
tion of this system of equations was carried out by using implicit difference schemes of 
second order accuracy in space and first order accuracy in time [22]. It was assumed that 
the conditions at infinity are satisfied at some finite r = Rb, whose value depends on Pa 
and is determined by the condition of including the effect of perturbation reflection from 
a fictitious exterior boundary for the parameters at the beam center. In modeling the ef- 
fect of macrotransport processes on the variation of hydrodynamic parameters we assume that 
Tp = ~i VT (Pv = i) and K = 1.4. It has been assumed that the character of molecular inter- 

actions is determined by the Lennard-Jones potential [21] with typical parameters for di- 
atomic molecules o = 2.8"i0 -s cm, ~ = 3"10 zs erg. 

Consider initially the effect of processes related to excitation of molecular oscilla- 
tions. Figure 1 shows for Pa = i0, PI = PD = 1 the variation in NI', N2', N', T', and Tz 
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(lines 1-5) with time t' = t/T D on the beam axis for Pm = 0.5, PN = 4, ~ = -I, and 8 1 = 7 
[the solid lines correspond to the complete model, and the dashed - to the model in which 
macrotransport processes related to excitation of vibrational degrees of freedom are not 
taken into account (k V = 0)]. For the parameter values utilized we have the following time 

relations: T I = T D = ~ij v = ~i V = TI VT, T a = 0.i~i VT, I~Tzl = 16~i VT, ~T2 = 130Tz VT, TDzV = 

16Tz VT (for dipole molecules ~i VT = 10-7-10 -3 sec, depending on the medium parameters). It 

is seen that even for t < ~D these processes affect substantially the variations in N', NI', 
and N2'. Analysis shows that this effect is determined by the vibrational thermal diffusion, 
and is generated by the nonuniform distribution of the vibrational temperature T z along the 
beam radius, which at t' = 1 is -4.5 times larger than T o , the variation in the transla- 
tional temperature does not exceed in this case -0.025 To, with the interaction parameter 
being 6 = 0.46. Thus, if in the model with k V = 0 we have N'(t) = Nz'(t) = N2'(t) (only for 
t ~ T D we have Nz' # N2' due to the action of ordinary diffusion), for k V = 1 the shapes of 
the dependences N'(t), Nz'(t), and N2'(t) differ substantially. Since for small t the heat- 
ing of the medium is not substantial, the decrease in p', leading to a decrease in Nz', is 
insignificant and the behavior of N z' is primarily determined by the diffusion flow~ gener- 
ated in turn by the nonuniform distribution of T z. For Pm = 0.5 and PN = 4 Dz V < 0, the dif- 
fusion flow for molecules of a larger light gas A is directed from the periphery to the beam 
center, also leading to an increase in N z' at the axis. For molecules of sort B the dif- 
fusion flow is directed from the center to the periphery (])2 V > 0), therefore N 2' decreases 
on the axis. For large t (t > 0.4~ D) the variation in N i' is already determined by the den- 
sity variations along the beam axis. Therefore, reaching a maximum for some t, the N z' value 
starts decreasing. The effect of macrotransport processes, related to excitation of molecu- 
lar oscillations, on T' and T I is substantially weaker. In this case the behavior of T I is 
affected by not only the vibrational thermal diffusion, but also by the vibrational thermal 
conductivity, leading to a decrease in T 1 on the beam axis in comparison with the model not 
including these processes (k V = 0). We note that for r > 0 (in the case being considered 

= -I) one has kinetic cooling, and for ~ > 0 - kinetic warming of the medium [23]. 

The effect of the parameters { and 8z, determined in terms of the spectroscopic charac- 
teristics of the absorption transition for Pa = i0, PI = PD = i, Pm = 0.5, PN = 4, on the 
variations in Nz', N2' , T s' (lines 1-3) with time on the beam axis is illustrated in Figs. 
2 and 3 (in Fig. 2 the solid lines correspond to 8 1 = 7, the dashed to 8 z = 3, { = -i, and 
in Fig. 3 the solid lines correspond to ~ = -i, and the dashed to ~ = -0.i, 8 1 = 3). From 
the distributions presented it is seen that a decrease in e~ leads to smoother variation in 
all parameters and to an increase in the time of kinetic cooling. In this case the differ- 
ence between the T' and T z values, calculated by the complete model and by the model with 
k V = 0, also increases. A decrease in I~I, on the other hand, leads to a sharper variation 
in Nz', N2' , and T', and to a decrease in the time of kinetic cooling. Interesting here is 
the fact that the variation in 8 z and ~ changes substantially the behavior of the dependences 
Ni'(t), though the parameters 8 z and { do not appear explicitly in the equations for Ni'. 
Their effect on N i' occurs directly through the variation in T' and Tz [for decreasing 8 z T' 
and T z vary more weakly, and for increasing ~ (-i ! ~ ~ i) - more strongly]. 
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The parameters Pm and PN appear explicitly in the equations for Nl', N2'; besides, they 
determine the sign of kT1, and consequently, also the direction of the flow caused by both 
ordinary and vibrational thermal diffusion. Therefore, their effect on the variation of 
hydrodynamic parameters must be quite substantial. Figure 4 shows the dependences N1'(t'), 
N2'(t'), and T'(t') (lines 1-3) at Pa = i0, PI = PD = i, 81 = 7~ r = -0~ PN = 4 for Pm = 
0.5, i, 2 (the solid, dashed, and dashed-dotted lines). It is seen that a variation of Pm 
from 0.5 to 2 leads to a qualitatively different behavior of N1'(t') , N2'(t'). Thus, while 
for Pm = 0.5 the function N1'(t') has a maximum, and N2'(t') decreases smoothly, at Pm = 2 
the situation is reversed. This is explained by the change in sign of kTi. The behavior 
of the dependences T'(t') is practically unchanged for different Pm" The effect of the pa- 
rameter PN is illustrated by Fig. 5, where lines 1-3 are provided for Nl'(t'), N2'(t'), and 
T'(t'), while the solid, dashed, and dash-dotted lines correspondto PN = 4; i; 0.25 (Pm = 
0.5, Pa = i0, PI = PD = i, 81 = 7, ~ = -0.i). It is seen that a decrease in PN leads, 
firstly, to deeper cooling of the medium and its stronger subsequent heating, and, secondly, 
to sharper variations in N1'(t') and N2'(t'). The fact is interesting here that for P N = 
0.25 the behavior of the dependences N1'(t') and N2'(t') is accurately determined by the be- 
havior of T'(t') for small t' As follows from (16)-(19), the changes in the relations be- 
tween the characteristic times of processes must also affect the distribution of hydrodynamic 
parameters, both along the beam radius and in time. Lines 1-3 in Fig. 6 show the variations 
Nl'(r'), N2'(r'), T'(r') at t = T D for three characteristic cases, differing in the relations 
between Pa, PD, PI, PV: i) Pa = I0, PV = PI = PD = i; 2) Pa = PI = PD = PV = i; 3) Pa = 

PI = PV = i, PD = 0.i (the solid, dashed, and dashed-dotted lines). The parameters ~, 81, 
Pm, PN are identical (~ = -i, 81 = 7, Pm = 0~ PN = 4). From the distributions presented 
it is seen that the relation between the VT-relaxation time and the diffusion time affects 
the variations in Nl' , N2' , and T' most strongly. A decrease in the ratio TIVT/~ D from 1 to 



0.I (a decrease in PD from 1 to 0.I) leads to sharper heating of the medium, inducing a sub- 
stantial decrease in N z' (here N 1' < 0) in comparison with the case PV = PD = I, when N l' > 
0. Variations in the relation between Pa and the remaining parameters, characterizing the 
rates of various transport processes, affect the behavior of Nz'(r'), N2'(r'), and T'(r') to 
a lesser extent. 

Thus, the analysis performed has shown that the excitation of molecular oscillations 
by resonance radiation with nonuniform intensity profiles along the beam radius leads to 
substantial enhancement in the effect of macrotransport processes on the variation of the 
hydrodynamic parameters of the medium. The laws of variation of these parameters are deter- 
mined by the relations of characteristic times of the corresponding processes, the composi- 
tion and masses of the mixture molecules, as well as the spectroscopic characteristics of 
the absorbing transition. 
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COMPARISON OF MODELS WITH DIFFERENT AND IDENTICAL VIBRATIONAL 

TEMPERATURES OF MOLECULAR COMPONENTS 

V. G. Shcherbak UDC 533.6.011 

During the entry of bodies into the Earth's atmosphere with a primary cosmic velocity 
the flow conditions at the fundamental thermal stress portion of designed trajectories are 
characterized by the absence of equilibrium between translational and vibrational degrees 
of freedom [i]. This result was obtained by using a model of one "averaged" vibrational 
temperature. 

A model was considered in [2, 3], in which each molecular component corresponds to its 
vibrational temperature. These vibrational temperatures were found to differ insignificantly 
from each other, and the results practically coincide with calculation results using the 
"averaged" vibrational temperature. A number of simplifying assumptions were made in this 
case in [2, 3], including the neglect of the opposite effect of chemical reactions on vibra- 
tional relaxation, leading to a breakdown of the vibrational energy balance, resulting from 
not including its variations during generation and decay of molecules due to chemical reac- 
tions�9 

As shown in [i], with the development of dissociation the value of the corresponding 
source term is comparable with the value of the fundamental Landau-Teller term, and neglect- 
ing the effects mentioned above can lead to a substantial excess of the vibrational temper- 
ature over the translational one inside the shock layer, which was also observed in [2, 3]. 

In the present study we compare calculation results using an "averaged" model and dif- 
ferent vibrational temperatures of molecular components for the example of flow in the vi- 
cinity of the critical line of the orbiting satellite "Buran." 

I. Statement of the Problem�9 Consider stationary flow around an axially symmetric 
body due to a viscous chemically and thermodynamically nonequilibrium gas. We use the model 
of a thin viscous shock layer, being the asymptotic form of the Navier-Stokes equations for 
large Mach and Reynolds numbers, and density ratios before and after the shock wave, which 
is characteristic of the fundamental thermal stress portions of designed entry trajectories. 
Taking into account vibrational relaxation, the system of equations at the stagnation line 
can be written down as follows (y is the distance along the axis from the body): 

' av (9v)----O, p D u = - - 2 p ~ + - ~ v  t R---7~---~-]; (1..].) 

Op __0, Op~ = pu2; 
eu ~ ( 1 . 2 )  

( : YM )d p~DT- -  p ~ DE*~-- Dp = ~ "% or 
~=i (1.3) 

�9 OT 
-- hi~vi - cpiI~ -~v ; 

i = L  "= 
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